A few hundred kilometres above the earth, an orbiting object receives a signal from a ground transmitting station; gently, the satellite powers up its systems and conducts a series of short thrusts that put it on course to its target. Drifting into proximity, at five km per second, it emits a short yet powerful electromagnetic pulse (EMP). Far below, the Indian Navy cannot seem to get through to its nuclear submarines, the bearers of its vital nuclear second-strike capability. This may sound like a scenario from a John McTiernan blockbuster but it is very much within the realm of the possible. For years now, China has been developing its capabilities to wage war in space and of late, its string of successes merit serious concern from India and its neighbours.
Militarisation of space started decades ago. In June 1959, the United States began to launch the Corona series of reconnaissance satellites that were tasked with gathering information on the Soviet military, their economy, electronic intelligence, and even early detection of missile launches. A total of 144 satellites were put into low earth orbit (LEO) until May 1972. The United States had halting success with anti-satellite (ASAT) weaponry but efforts were discontinued by the US Congress as the Cold War was winding down. However, in February 2008, the US used a Standard Missile 3, designed primarily as an anti-ballistic missile, to destroy one of its military reconnaissance satellites.
On the other side of the Cold War, the Soviet Union developed and deployed an anti-satellite weapons system as early as November 1963, the Istrebitel Sputnikov (IS). The weapon was a single-launch kamikaze satellite carrying a 300 kg fragmenting warhead that would be put into LEO by a launch vehicle and then manoeuvre itself towards its target. The radius of the shrapnel from the warhead was no more than two kilometres and the satellite itself carried only enough fuel for 300 seconds of operation. The Soviets had little success with anti-satellite missiles but experimented with military space stations, lasers, and other means of intercepting, jamming, and destroying enemy satellites in case of war.
The Soviet Union’s successor state, Russia, restarted this project and secretly launched a satellite in December 2013 that is capable of approaching other satellites, studying them, and intercepting, jamming, or destroying them if necessary. This is similar to the US Prowler satellite launched in 1990 or the ANGELS (Automated Navigation and Guidance Experiment for Local Space) programme announced in 2014.
China’s forays into space began in 1956 with a programme whose primary task was to detect and counter American and later Soviet ballistic missile threats. Its formative years were spent developing a credible nuclear deterrent and received much assistance from Moscow until the Sino-Soviet split ended all cooperation in 1960. A presence in space was envisioned only in July 1967 and China’s first successful satellite was launched in April 1970. However, space evinced little interest from a China that was still recovering from the Cultural Revolution and new projects were taken up sparingly.
China was able to offer a commercial launch facility in 1985 that would put several European and Asian satellites into orbit. Interest in space was on the rise again in Beijing and a full-fledged ministry for aerospace was established in 1988. The number of annual Chinese space launches currently exceeds that of the US and it is believed that China presently operates some 132 satellites in space, second to only the US.
In January 2007, China shocked observers by bringing down one of its Fengyun class meteorological satellites with an ASAT variant of the Dong Feng 21 missile. Beijing conducted two more tests in May 2013 and in July 2014. In these, a new type of missile was tested, the Dong Neng 2. China tested placing a parasitic microsatellite in orbit in 2008 when a BX-1 passed within 25 km of the International Space Station—a collision could have been catastrophic.
The extent of integration of space-based assets in prosecuting Operation Desert Storm in January 1990 marked a new era in warfare. The use of global positioning to locate troops, reconnaissance satellites for image data of terrain and enemy troops, communications satellites to connect various services and theatres of battle, and Defence Support Program (DSP) satellites to detect early the launch of Scud missiles made the conflict the first space war. By Operation Enduring Freedom in October 2001, satellites had become even more integral to the military—now, they guided smart bombs onto their targets, provided video links to headquarters, and were the interface between unmanned aerial vehicles (UAV) and their operators. In 2015, the ability to cripple or even deny an opponent the use of space assets is a severe threat that can decide the fate of an engagement.
Beijing has observed these developments closely and has come to the conclusion that “whoever controls space (the universe) can control the earth,” a quotation the Chinese military attributes to US president John F Kennedy. In fact, much of Chinese thinking on space warfare is directly influenced by the US. Chinese security journals regularly cite US literature on strategy, tactics, and technology in space. Presently, there is an unstated acceptance in the Chinese Politburo and the PLA of the US’ unassailable technological and material superiority in space. As a result, China has opted for an anti-access/area denial (A2/AD) strategy that would eliminate or hinder US C5ISR capabilities (Command, Control, Communications, Computers, Combat Systems, Intelligence, Surveillance, and Reconnaissance) against China in case of conflict. China would conduct nodal warfare, breaking the US’ information chain at critical moments to undermine support to conventional forces and weaken their dominance.
Chinese military ambitions are focused on achieving tactical parity with the US. To this end, the country’s primary focus in counter-satellite warfare has been on space object surveillance and identification, direct ascent and co-orbital ASAT programmes, laser and microwave weapons systems, electronic warfare, and cyber weapons. The PLA’s understanding of US military doctrine, based on US actions as well as policy documents such as the US Space Command’s Vision for 2020 and Joint Vision 2020, is that a space war is inevitable; through the command of space, the US has the ability to perform surgical strikes and obviate the necessity for the greater use of force. This ability may be enough of a deterrent to an opponent to submit without fighting. Yet the cost of deploying space assets and their limited scale means that these forces cannot be employed at will. Even rich nations like the US will be strained to maintain even a thin layer of space-based assets. Instead of challenging the US in toto, Beijing will seek to gain footholds in a few well-chosen areas that have decisive implications for security and operations. Thus, full engagement is avoided. As one Chinese analyst wrote, “to break one finger is more effective than hurting all fingers.”
According to Chinese military strategists, modern wars have become increasingly short and are often decided by just one intense campaign. There might not be time, or China may lack the capability, to destroy all the enemy’s strategic assets as it might have had to in previous wars. In fact, there is no need to do so anymore if the offensive is focused, even temporarily, against vital targets that integrate and support the enemy’s overall operations system. In other words, the PLA will strive to paralyse its opponent first and conduct an operation of annihilation later to encourage a rapid political conclusion to hostilities. The appeal of this strategy against a technologically and operationally superior foe is obvious; as a Xinhua article recently stated, “For countries that can never win a war with the US by using the method of tanks and planes, attacking the US space system may be an irresistible and most tempting choice.” Once most of the technological force multipliers are eliminated, China will have the upper hand in terms of sheer numbers.
This is unfortunate for India, which has to contend with a hostile power on its border that is constantly expanding its military capabilities. China’s undeclared arms race with the US has ripple effects its neighbours have to bear. India will also have to contend with the possibility that China will share at least some of its space assets with Pakistan. Beijing may easily provide Islamabad with intelligence on Indian troop movements, deployment, and signals intercepts in addition to what Pakistan might have managed on its own. The use of Chinese A2/AD against India will degrade Delhi’s conventional superiority over Islamabad and bleed the Indian treasury more to mitigate the situation. Such a scenario is highly plausible given the past reckless sharing of nuclear and missile technology by Beijing with Islamabad.
The good news is that destroying space assets is not a particularly difficult task—satellites are relatively easy to detect and since their orbits are clearly defined, much easier to shoot down than ballistic missiles. Also, Indian defence efforts in the new domain of space need not start from the ground up—India has already developed several technologies on its own for other weapons systems that may be modified and applied to defence purposes. Much like in the nuclear field, the difference between a space asset for civilian use and for military purposes is marginal and apparent only towards the end of the production cycle.
India’s Agni III and Agni V missiles, for example, amply indicate the potential to engage targets at high altitudes. The space missions to the moon and to Mars also demonstrate a fair ability to track objects through space and communicate with them. India’s family of satellites is not unimpressive and it has already launched several dual-use civilian and military satellites.
In 2001, the Indian Space Research Organisation (ISRO) launched the first satellite that had clear military applications. The Earth Observation Technology Experiment Satellite (EOTES), with a resolution of one metre and weighing slightly over 1,100 kg, was put in orbit from Sriharikota. In 2008, Cartosat-2A was launched with even better resolution than the EOTES, and Cartosat-2B was put in orbit in 2010. The same year, ISRO also sent up the Oceansat-2, purposed for weather tracking and identification of fishing zones. However, it is also available to the Indian Navy for bathymetry and anti-submarine warfare.
In the aftermath of the terrorist attack on Mumbai, India acquired a radar-imaging satellite, the RISAT-2, from Israel. Equipped with the X-Band Synthetic Aperture Radar, it can monitor its assigned area regardless of time of day or weather. ISRO had planned to launch Cartosat-3 by the end of 2014 but it has now been pushed back to September 2017; the satellite will have a resolution of 25 cm.
None of these are exclusively military satellites, of which India has very few. Even the constellation of seven Indian Regional Navigational Satellite (IRNSS) GPS satellites is meant to be available to civilians as well as the military. Part of the reason is the expense of becoming a space-faring nation. ISRO subsidises the development of its space infrastructure by selling services—launches, imagery, applications—commercially. Data from Indian satellites is routinely used around the world and benefit many causes. According to one estimate from 2004, India’s IRS satellites have earned more than four times the amount which has been invested in them through commerce as well as contributions to urban planning, disaster management, and water resources management.
However, this sort of jugaad economics cannot continue for much longer. “In space, we have to be at par,” explains former ISRO chairman U.R. Rao. “We cannot say that we would make products which cost less but can get part of the job done. You just cannot bargain with space and have to have the best technology.” The GSAT-7, India’s first exclusively military satellite, meant for communication with and between Indian naval vessels, was launched only in August 2013; another dedicated military satellite for electronic intelligence, the Communication-Centric Intelligence Satellite (CCI-Sat), is scheduled for 2020.
One important step India can take is to give its disparate space efforts some focus. A dedicated Aerospace Command, to serve more as a nodal agency between the services than an independent wing of the Indian military, will be better able to judge and accommodate the needs of the services without unnecessary and expensive replication of capabilities. Furthermore, it would be politically wise to separate ISRO from military missions; the organisation only recently was removed from under US sanctions and its involvement in Indian space warfare missions would only make it a target again. The dual use of space technologies a well-established fact; it serves India’s needs to have one of its space centres beyond international reproach.
India also needs to significantly upgrade its space infrastructure. The country has just one launch facility at Sriharikota that struggles to handle much more than six to eight launches per year when several more are required if the deficiencies in space are to be overcome in a timely manner. Additionally, ISRO has been struggling with the development of an indigenous cryogenic engine and the Geosynchronous Satellite Launch Vehicle (GSLV) for years. The Polar Satellite Launch Vehicle (PSLV) has managed to handle the workload, especially with additional boosters strapped on, but India needs a reliable rocket that can put payloads in excess of even 15 or 18 tonnes into LEO.
Beyond infrastructure, India needs to consider what countermeasures it can provide its satellites. Even though satellites are easy targets, the more advanced varieties can withstand some amount of interference with its sensors and communications. Shielding is perhaps the simplest countermeasure, but this makes satellites heavier. Another method is to build in some amount of manoeuvrability so that it can escape from a predatory co-orbital anti-satellite device. This will require fuel to be carried and stored onboard which will also make the satellite heavier and will eventually run out. Yet another option is to build in redundancy—if a certain mission requires a constellation of nine satellites, a dozen might be tasked; the additional three satellites, together with the ability to launch replacements quickly if needed, might perhaps be a cheaper option than a handful of very expensive and very valuable satellites.
The military must also consider what kind of anti-satellite measures it wishes to develop to disrupt the enemy’s C5ISR. Given the work done in developing India’s ballistic missile defence and intercontinental ballistic missile capabilities, a kinetic kill vehicle—industry parlance for an ASAT missile—might seem the easiest option. However, the Chinese test in 2007 created over 2,500 fragments in space that now interfere with the satellites of all nations. In fact, one of these fragments crashed into a Russian satellite in May 2013 and destroyed it. Cleaner kills would be through the development of microwave, EMP, or laser weapons systems. Depending upon their nature, intensity, and exposure, the effects could be temporary or permanent, giving India far more flexibility in its response to incidents.
There is little reason to panic just yet but space warfare is something that deserves more scholarly attention in India. A fair portion of India’s space budget goes unused each year despite the need for aggressive expansion of infrastructure, facilities, and manpower. Though it is difficult to compare space budgets internationally, due to the dual use nature of the technology, India needs to invest significantly more in the industry. Luckily, this is not a guns vs butter argument because the potential for overlap between civilian and military needs is enormous. While the initial elements of robust space defence exists in India, strategic vision is needed to shape it into a potent programme. As the Good Book tells us, where there is no vision, the people perish (Míshlê 29:18).