Swarajya Logo

FLASH SALE: Subscribe For Just ₹̶2̶9̶9̶9̶ ₹999

Claim Now

Science

The Double Life Of CV Raman

  • Why C V Raman was a scientist like no other

Aravindan NeelakandanFeb 28, 2018, 11:47 PM | Updated 11:47 PM IST

Sir C V Raman (IISc Bangalore)


The young assistant accountant general of Calcutta, a Madrasi in his late teens with his newly married wife, was leading a double life in the strange city. Every day at 5 pm, as the government office closed, the young man switched into a new persona and went mysterious till 9:30 or 10 pm and then returned home. Next morning, as early as 5:45 am, he would assume the mysterious persona until 9:45 am and then would become ‘normal’ - a financial bureaucratic clog in the machine of the Empire. The young man was none other than C V Raman - Asia's first Nobel laureate in physical science.

For almost one decade between 1907 to 1917, Raman worked as a financial bureaucrat while spending all his other time doing scientific research in an organisation founded by Mahendra Lal Sircar (the physician who treated Sri Ramakrishna) called ‘Indian Association for the Cultivation of Science’ (IACS). In a way, this aspect of Raman reflected the life of another genius of physics - Albert Einstein, who worked as a clerk in a patents office while contemplating and solving the most profound mysteries of space and time. And like Einstein, Raman, too, was a music enthusiast. But Raman’s love in music went beyond the aesthetics and explored the physics of musical instruments and the music they produced. Physicist and science educator G Venkatraman in his excellent book Raman and His Effect (Universities Press, 1995) has explained this aspect of Raman lucidly. Some of the following paragraphs are based on his book.

Lord Rayleigh, a great physicist, had conducted an experiment with a tuning fork of frequency 256 Hz and was excited when he mounted it upon a resonance box of frequency 521 Hz. In such a system, the box should not resonate but actually it did. C V Raman tried to create systems similar to one discovered by Rayleigh. He created one such with a weighted wire in tension attached to a board stretched to a frame. When the wire was plucked the board vibrated double the frequency of the wire. Later, to his surprise, he discovered this interesting principle being used in a very common Indian string instrument which the wandering sadhus carry - the ektara.

(L to R) Lord Rayleigh, Raman, the instrument made by Raman to repeat Rayleigh phenomenon, Ekatara which also uses the same principle.

Raman wrote:

Raman also studied exhaustively the physics of the music of violin which eventually became a book in itself : On the Mechanical Theory of Vibrations of Musical Instruments of the Violin Family with Experimental Verification of the Results, Part-I. Raman also constructed a mechanical violin. In his study of violin, he discovered the relation between frequency response of the violin and its quality. Frequency response curve is obtained by plotting bowing pressure in the y-axis and the frequency in the x-axis. Frequency response curve of a violin is now called ‘Raman Curve’.

The mechanical violin built by Raman and the Raman curve for violins: ‘Raman and His Effect’, G.Venkataraman, 1995

Though Raman did study both the Indic classic string instruments - veena and tambura, he did not make an elaborate study of them as he did with the violin. Nevertheless, he noted that the bridge in these two instruments is rounded and not sharp as in Western musical instruments and that this contributed to the tonal richness and melodious notes of the Indian instruments. Raman's study on Indian percussion instruments, mridangam and tabla, led him to marvel at the 'remarkable appreciation of acoustical principles' by ancient Hindus. Comparing them to percussion instruments of the West, Raman wrote:

Raman set out to find out the physics of mridangam through a series of experiments in 1919. However, later, his research changed from the physics of music to optics and the Raman effect would soon explain the blue of the sky. Yet, the physicist would return back to his passion and in a paper published in 1935 in the 'Proceeding of Indian Academy of Sciences' he explored the ‘Indian musical drums’. Here is an excerpt that shows how as a physicist he viewed the musical instruments.


The love for music when a physicist has it, deepens the understanding of aesthetics of music at various levels.

However, it is not only the love for music that made C V Raman stand apart. His love for science as ‘entirely and essentially a human phenomenon’ also made him see beyond the farce of Nehruvian scientific temper, showed him the necessity to reach out to the individual and keep out the government state-ism of the Soviet kind. His criticism of the Council of Scientific and Industrial Research (CSIR) turned out to be prophetic. The socialist bureaucratic machinery that runs CSIR turned it into what Raman called the Taj Mahal only to bury science.

C V Raman resented Indian science becoming victim to the socialist pipe dream of Nehru.

Soon after independence, Raman was one of a very few who had realised that a Nehruvian caricature of a Soviet Stalinist state would bade ill for India. When the Indian Express asked him for an independence day message in 1952, he said:

CV Raman rightly had nothing but disdain for the substance-less state-run techno-centric scientism of Nehru. Uma Parameswaran, in her well researched biography of Raman, shows how he resolutely rejected the patronising plots of Nehru pointing out that the first Prime Minister was flawed in principle in his approach to science:

Raman’s disapproval for Nehru’s view on science was so great that his grandson Sekhar witnessed in 1955, Raman ‘picking up a bust of Nehru that stood on the shelf and hurling to the ground’, breaking it into pieces. He also had smashed with a hammer the Bharat Ratna given to him by Nehru government. When in the mid-1960s, an All India Radio official asked him about the role of Nehru in the development of science in India, he answered half-joking and half-seriously ‘What? Do you want to lose your job? If you air what I have to say, you will surely be fired.’

Indian science has thus two ways to follow: one, the empty socialist rhetoric of scientific temper, the path fabricated by dynasty socialists or a system that will reward and respect innovative thinking, individual freedom and hard work - the vision that C V Raman gave us.

Join our WhatsApp channel - no spam, only sharp analysis